Noninvasive mapping of human trigeminal brainstem pathways.

نویسندگان

  • Jaymin Upadhyay
  • Jamie Knudsen
  • Julie Anderson
  • Lino Becerra
  • David Borsook
چکیده

The human trigeminal system mediates facial pain and somatosensory processing. The anatomic location of neuronal substrates and axonal pathways of the trigeminal system have previously been characterized with conventional in vitro methods. The present investigation implemented diffusion tensor imaging (DTI) and probabilistic tractography to first segment the peripheral trigeminal circuitry, trigeminal nerve branches (ophthalmic, maxillary, and mandibular nerves), ganglion, and nerve root. Subsequent segmentations involved the spinal trigeminal and trigeminal thalamic tracts, which respectively convey information to the spinal trigeminal nuclei and ventral thalamic regions. This latter procedure also identified 1) spinal thalamic (anterolateral [AL]) system pathways (propagating pain and temperature information from the body), 2) trigeminal lemniscus (TL; touch and face position), and 3) medial lemniscus (ML; touch and limb position). The anatomic location of the identified pain and somatosensory pathways compared well with previous functional findings in the human trigeminal system, as well as the tract position in human histological cross sections. Probabilistic tractography may be a useful method to further comprehend the functional and structural properties of trigeminal and other related systems. Application of DTI to map pain and somatosensory pathways in conjunction with a characterization of function properties of pain and somatosensory processing would further define the systematic changes that occur in trigeminal pathology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Pathways from the Subcortical Limbic Structures to the Trigeminal Motor System in the Lower Brainstem: A Hodological Review

The organization of the emotion-related somatic motor behavior, including jaw movements, is governed not only by the cortical limbic system but also by the subcortical limbic system including the amygdala and hypothalamus. GABAergic neurons in the central amygdaloid nucleus (CeA) and glutamatergic neurons in the posterior lateral hypothalamus (PLH) exert inhibitory and excitatory influences, re...

متن کامل

c-Kit expression in somatosensory nuclei of lower medulla oblongata.

Protein kinase signal-transduction pathways play critical roles in regulating nociception. The c-kit receptor contributes to pain regulation in the spinal cord and is present on both peripheral and central terminals. Expression of c-kit was demonstrated in human trigeminal and spinal ganglia. However, the brainstem expression of c-kit was overlooked. We aimed to evaluate it by immunohistochemis...

متن کامل

Vestibulotrigeminal pathways in the frog, Rana esculenta.

The aim of this study was to investigate whether primary vestibular afferent fibers establish direct connections with the motor and sensory trigeminal system in the brainstem of the frog. The experiments were carried out on Rana esculenta. In anaesthetized animals the trigeminal and vestibular nerves were prepared, and their proximal stumps were labeled either with fluorescein binding dextran a...

متن کامل

Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T

The brainstem is a major site of processing and modulation of nociceptive input and plays a key role in the pathophysiology of various headache disorders. However, human imaging studies on brainstem function following trigeminal nociceptive stimulation are scarce as brainstem specific imaging approaches have to address multiple challenges such as magnetic field inhomogeneities and an enhanced l...

متن کامل

Positive Feedback in a Brainstem Tactile Sensorimotor Loop

The trigeminal loop in the brainstem comprises the innermost level of sensorimotor feedback in the rat vibrissa system. Anatomy suggests that this loop relays tactile information from the vibrissae to the motoneurons that control vibrissa movement. We demonstrate, using in vitro and in vivo recordings, that the trigeminal loop consists of excitatory pathways from vibrissa sensory inputs to vibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 60 5  شماره 

صفحات  -

تاریخ انتشار 2008